Aurora

Introducing NIRxWINGS2: The Next Generation of Physiological Sensing

We’re excited to officially launch NIRxWINGS2 – the next evolution in physiological sensing technology for multimodal fNIRS neuroimaging. Designed in response to direct feedback from our global user community, NIRxWINGS2 brings upgrades in signal quality, flexibility, and mobility to your fNIRS studies.

Whether you're investigating cognitive function, stress and attention in dynamic environments, or designing advanced neuroergonomic paradigms, NIRxWINGS2 is your tool for combined physiological and fNIRS measurements.

In this blog post, you will find some of the features and advancements NIRxWINGS2 offers your research!

Like its predecessor, NIRxWINGS2 is designed to extend the NIRSport2 and comes with sensors for respiration, ExG (e.g., EMG, EOG, ECG), temperature, PPG, and electrodermal activity (EDA/GSR). However, the new universal sensor port offers more flexibility for your research.


Full Customization with the NIRx BioLink

The NIRx BioLink universal sensor port introduces a flexible system that adapts to your research now and in the future.

  • Mix & match sensors: ExG (e.g., EMG, ECG), respiration, temperature, and EDA

  • Color-coded sensors for fast, mistake-free setup

  • Auto-recognition via our Aurora software streamlines configuration

  • Ready for future sensor types—your research is future-proof!

No matter your study design, you’re in control.


Smarter Sensors, Cleaner Data

With NIRxWINGS2, signal fidelity takes a leap forward. The EDA, respiration, and temperature sensors have been refined to deliver cleaner, more reliable outputs in even the most dynamic settings:

  • EDA: Redesigned circuit for improved signal quality

  • Respiration: Inductive sensor belt minimizes motion artifacts

  • Temperature: Thermistor-based sensor provides real-time responsiveness

  • Shielded cables reduce cross-talk for high-fidelity signals


Built for the Real World

Research doesn’t always stop at the lab door, so why should your tools? Combining the NIRxWINGS2 + NIRSport2 means compact, lightweight, and wireless solution for fully mobile multimodal recordings:

  • Wireless connectivity & internal storage

  • Real-time synchronization of physiology + fNIRS via LSL stream

  • Robust performance in high-movement, multi-sensory environments

  • Ideal for studies in sports science, mindfulness, VR, learning, and more

Take your setup into classrooms, clinics, workplaces, or the great outdoors.


See It in Action – Join Our Webinar

Curious how NIRxWINGS2 can elevate your work? Don’t miss our upcoming live webinar, where we’ll showcase:

  • How to set up your custom configuration with NIRx BioLink

  • Strategies to improve data quality across modalities

  • Real use cases from our global research community

  • Live Q&A with our NIRx expert support team!

📅 Date: May 28th, 2025
Time: 4-5 pm, GMT + 2
🔗 Register via Zoom


New Aurora with advanced multiplexing for high-density fNIRS

by Dr. Alexander von Lühmann

What is High-Density fNIRS and Diffuse-Optical Tomography, and why should we care?

  • In recent years, we have witnessed a comeback of High-density fNIRS studies. Dr. David Boas discusses the recent advances and perspectives in this 2 part-webinar.

  • HD-fNIRS can improve spatial resolution, depth, and lateral specificity, and can enable image reconstruction of cerebral activation (Diffuse Optical Tomography, DOT).

  • DOT fNIRS research was initially only done by a small number of experts in the field because it requires special infrastructure, such as many channels, high dynamic range instrumentation, and photon migration simulation algorithms.

"What are the trade-offs to achieve high-density measurements?"

Excellent signal quality and a good sampling rate are basic requirements for fNIRS research, regardless of conventional or high-density measurements. To achieve high-quality recordings, a trade-off between several challenges has to be addressed:

  1. A high dynamic range is needed to measure channels at short and long source-detector distances. Long channels need brighter sources to see good signal, but brighter sources can saturate short channels, reducing signal quality.

  2. With multiple sources closely packed, avoiding crosstalk is a must. Pure time-multiplexing (turning one source on at a time) in a high-density setup reduces the sampling rate.

The new Aurora: Multi-Level Illumination and Extended Frequency Encoding

We solved these issues above by unlocking two powerful new features of the NIRSport2 with Aurora: Multi-Level Illumination (MLI) and Extended Frequency Encoding (EFE).

  • Multi-Level Illumination now enables each source to be used multiple times with different intensities in the same measurement cycle.

  • This way, optimal signal quality can be achieved despite differences in source-detector distances between channels! The result: optical signal quality at an even higher dynamic range, locally optimized.

Diagram showcasing one use case of the MLI feature. If a source has channels at short distances (e.g. <20 mm short separation channels) and at long distances (e.g. usual >30 mm channels), detectors that are too close to a light source might be “blinded” by the amount of light needed to reach the longer channels. By splitting the source illumination sequence into two parts with different light levels, it is possible to first: (A) use lower-powered light to optimally reach detectors at shorter distances; and then (B) use higher-powered light to optimally reach detectors at longer distances.

  • Extended Frequency Encoding increases the number of simultaneously used frequencies for signal (de)modulation from two to eight.

  • What does this mean? More sources close by one another can be turned on at the same time without affecting signal quality by creating crosstalk. This saves precious time switching steps and therefore doubles the available sample rate.

  • Smart Optimization feature: Both MLI and EFE do not have to be configured by the user.

  • If enabled, our new Smart Optimization feature automatically figures out the best signal quality and sample rate that can be achieved with your montage. 

In summary: Your NIRSport2 gets an upgrade for high-density and higher sample rates, both without making any compromises on the outstanding signal quality that the system is known for. We further empower you to perform DOT fNIRS-based tomographic image reconstruction within our NIRSport2 platform.

Get in touch with us at consulting@nirx.net to find out more